Правила нахождения первообразной для элементарных функций. Конспект урока "три правила нахождения первообразных". Интегрирование выражений вида \(\textstyle \int \sinn x \cosm x dx \)

Операция, обратная дифференцированию, называется интегрированием, а процессом, обратным нахождению производной, является процесс нахождения первообразной.

Определение: Функция F(x) называется первообразной для функции f(x) на промежутке I ,если для любого х из промежутка I выполняется равенство:

Или Первообразной для функции F(x) называется функция, производная которой равна данной.

Зад

ача интегрирования состоит в том, чтобы для заданной функции найти все ее первообразные. Важную роль в решении этой задачи играет признак постоянства функции:
Если

На некотором промежутке I, то функция F - постоянная на этом промежутке.

Все первообразные функции а можно записать с помощью одной формулы, которую называют общим видом первообразных для функции f.

Основное свойство первообразных:
Любая первообразная для функции f на промежутке I может быть записана в виде

Где F(x) – одна из первообразных для функции f(х) на промежутке I, а С – произвольная постоянная.

В этом утверждении сформулированы два свойства первообразной
1) какое бы число ни подставить вместо С, получим первообразную для f на промежутке I;
2) какую бы первообразную Ф для f на промежутке I ни взять, можно подобрать такое число С , что для всех х из промежутка I будет выполнено равенство Ф(х) = F(x) + C.

Основная задача интегрирования : записать все первообразные для данной функции. Решить её - значит представить первообразную в таком общем виде: F(x)+C


Таблица первообразных некоторых функций


Геометрический смысл первообразной


Графики первообразных -это кривые, получаемые из одной из них путём параллельного переноса вдоль оси ОУ

На этой странице вы найдёте:

1. Собственно, таблицу первообразных — её можно скачать в формате PDF и распечатать;

2. Видео, посвящённое тому, как этой таблицей пользоваться;

3. Кучу примеров вычисления первообразной из различных учебников и контрольных работ.

В самом видео мы разберём множество задач, где требуется посчитать первообразные функций, зачастую довольно сложных, но главное — не являющихся степенными. Все функции, сведённые в таблицу, предложенную выше, необходимо знать наизусть, подобно производным. Без них невозможно дальнейшее изучение интегралов и их применение для решения практических задач.

Сегодня мы продолжаем заниматься первообразными и переходим у чуть более сложной теме. Если в прошлый раз мы рассматривали первообразные только от степенных функций и чуть более сложных конструкций, то сегодня мы разберем тригонометрию и многое другое.

Как я говорил на прошлом занятии, первообразные в отличие от производных, никогда не решаются «напролом» с помощью каких-либо стандартных правил. Более того, плохая новость состоит в том, что в отличие от производной, первообразная вообще может не считаться. Если мы напишем совершенно случайную функцию и попытаемся найти ее производную, то это с очень большой вероятностью у нас получится, а вот первообразная практически никогда в этом случае не посчитается. Но есть и хорошая новость: существует довольно обширный класс функций, называемых элементарными, первообразные от которых очень легко считаются. А все прочие более сложные конструкции, которые дают на всевозможных контрольных, самостоятельных и экзаменах, на самом деле, составляются из этих элементарных функций путем сложения, вычитания и других несложных действий. Первообразные таких функций давно посчитаны и сведены в специальные таблицы. Именно с такими функциями и таблицами мы будем сегодня работать.

Но начнем мы, как всегда, с повторения: вспомним, что такое первообразная, почему их бесконечно много и как определить их общий вид. Для этого я подобрал две простенькие задачки.

Решение легких примеров

Пример № 1

Сразу заметим, что $\frac{\text{ }\!\!\pi\!\!\text{ }}{6}$ и вообще наличие $\text{ }\!\!\pi\!\!\text{ }$ сразу намекает нам, что искомая первообразная функции связана с тригонометрией. И, действительно, если мы посмотрим в таблицу, то обнаружим, что $\frac{1}{1+{{x}^{2}}}$ — не что иное как $\text{arctg}x$. Так и запишем:

Для того чтобы найти, необходимо записать следующее:

\[\frac{\pi }{6}=\text{arctg}\sqrt{3}+C\]

\[\frac{\text{ }\!\!\pi\!\!\text{ }}{6}=\frac{\text{ }\!\!\pi\!\!\text{ }}{3}+C\]

Пример № 2

Здесь также речь идет о тригонометрических функциях. Если мы посмотрим в таблицу, то, действительно, так и получится:

Нам нужно среди всего множества первообразных найти ту, которая проходит через указанную точку:

\[\text{ }\!\!\pi\!\!\text{ }=\arcsin \frac{1}{2}+C\]

\[\text{ }\!\!\pi\!\!\text{ }=\frac{\text{ }\!\!\pi\!\!\text{ }}{6}+C\]

Давайте окончательно запишем:

Вот так все просто. Единственная проблема состоит в том, для того чтобы считать первообразные простых функций, нужно выучить таблицу первообразных. Однако после изучения таблицы производных для вас, я думаю, это не будет проблемой.

Решение задач, содержащих показательную функцию

Для начала запишем такие формулы:

\[{{e}^{x}}\to {{e}^{x}}\]

\[{{a}^{x}}\to \frac{{{a}^{x}}}{\ln a}\]

Давайте посмотрим, как это все работает на практике.

Пример № 1

Если мы посмотрим на содержимое скобок, то заметим, что в таблице первообразных нет такого выражения, чтобы ${{e}^{x}}$ стояло в квадрате, поэтому этот квадрат необходимо раскрыть. Для этого воспользуемся формулами сокращенного умножения:

Давайте найдем первообразную для каждого из слагаемых:

\[{{e}^{2x}}={{\left({{e}^{2}} \right)}^{x}}\to \frac{{{\left({{e}^{2}} \right)}^{x}}}{\ln {{e}^{2}}}=\frac{{{e}^{2x}}}{2}\]

\[{{e}^{-2x}}={{\left({{e}^{-2}} \right)}^{x}}\to \frac{{{\left({{e}^{-2}} \right)}^{x}}}{\ln {{e}^{-2}}}=\frac{1}{-2{{e}^{2x}}}\]

А теперь соберем все слагаемые в единое выражение и получим общую первообразную:

Пример № 2

На этот раз степень уже побольше, поэтому формула сокращенного умножения будет довольно сложной. Итак раскроем скобки:

Теперь от этой конструкции попробуем взять первообразную от нашей формулы:

Как видите, в первообразных показательной функции нет ничего сложного и сверхъестественного. Все один считаются через таблицы, однако внимательные ученики наверняка заметят, что первообразная ${{e}^{2x}}$ намного ближе просто к ${{e}^{x}}$ нежели к ${{a}^{x}}$. Так, может быть, существует какой-то более специальное правило, позволяющее, зная первообразную ${{e}^{x}}$, найти ${{e}^{2x}}$? Да, такое правило существует. И, более того, оно является неотъемлемой частью работы с таблицей первообразных. Его мы сейчас разберем на примере тех же самых выражений, с которыми мы только что работали.

Правила работы с таблицей первообразных

Еще раз выпишем нашу функцию:

В предыдущем случае мы использовали для решения следующую формулу:

\[{{a}^{x}}\to \frac{{{a}^{x}}}{\operatorname{lna}}\]

Но сейчас поступим несколько иначе: вспомним, на каком сновании ${{e}^{x}}\to {{e}^{x}}$. Как уже и говорил, потому что производная ${{e}^{x}}$ — это не что иное как ${{e}^{x}}$, поэтому ее первообразная будет равна тому же самому ${{e}^{x}}$. Но проблема в том, что у нас ${{e}^{2x}}$ и ${{e}^{-2x}}$. Сейчас попытаемся найти производную ${{e}^{2x}}$:

\[{{\left({{e}^{2x}} \right)}^{\prime }}={{e}^{2x}}\cdot {{\left(2x \right)}^{\prime }}=2\cdot {{e}^{2x}}\]

Давайте еще раз перепишем нашу конструкцию:

\[{{\left({{e}^{2x}} \right)}^{\prime }}=2\cdot {{e}^{2x}}\]

\[{{e}^{2x}}={{\left(\frac{{{e}^{2x}}}{2} \right)}^{\prime }}\]

А это значит, что при нахождении первообразной ${{e}^{2x}}$ мы получим следующее:

\[{{e}^{2x}}\to \frac{{{e}^{2x}}}{2}\]

Как видите, мы получили тот же результат, что и ранее, однако не воспользовались формулой для нахождения ${{a}^{x}}$. Сейчас это может показаться глупостью: зачем усложнять вычисления, когда есть стандартная формула? Однако в чуть более сложных выражениях вы убедитесь, что этот прием очень эффективен, т.е. использование производных для нахождения первообразных.

Давайте в качестве разминки аналогичным способом найдем первообразную от ${{e}^{2x}}$:

\[{{\left({{e}^{-2x}} \right)}^{\prime }}={{e}^{-2x}}\cdot \left(-2 \right)\]

\[{{e}^{-2x}}={{\left(\frac{{{e}^{-2x}}}{-2} \right)}^{\prime }}\]

При вычислении наша конструкция запишется следующим образом:

\[{{e}^{-2x}}\to -\frac{{{e}^{-2x}}}{2}\]

\[{{e}^{-2x}}\to -\frac{1}{2\cdot {{e}^{2x}}}\]

Мы получили точно тот же результат, но пошли при этом по другому пути. Именно этот путь, который сейчас кажется нам чуть более сложным, в дальнейшем окажется более эффективным для вычисления более сложных первообразных и использование таблиц.

Обратите внимание! Это очень важный момент: первообразные как и производные можно посчитать множеством различных способов. Однако если все вычисления и выкладки будут равны, то ответ получится одним и тем же. Мы убедились в этом только что на примере ${{e}^{-2x}}$ — с одной стороны мы посчитали эту первообразную «напролом», воспользовавшись определением и посчитав ее с помощью преобразований, с другой стороны, мы вспомнили, что ${{e}^{-2x}}$ может быть представлено как ${{\left({{e}^{-2}} \right)}^{x}}$ и уже потом воспользовались первообразной для функции ${{a}^{x}}$. Тем не менее, после всех преобразований результат получился одним и тем же, как и предполагалось.

А теперь, когда мы все это поняли, пора перейти к чему-то более существенному. Сейчас мы разберем две простенькие конструкций, однако прием, который будет заложен при их решении, является более мощным и полезным инструментом, нежели простое «беганье» между соседними первообразными из таблицы.

Решение задач: находим первообразную функции

Пример № 1

Давайте сумму, которая стоит в числители, разложи на три отдельных дроби:

Это довольно естественный и понятный переход — у большинства учеников проблем с ним не возникает. Перепишем наше выражение следующим образом:

А теперь вспомним такую формулу:

В нашем случае мы получим следующее:

Чтобы избавиться от всех этих трехэтажных дробей, предлагаю поступить следующим образом:

Пример № 2

В отличие от предыдущей дроби в знаменателе стоит не произведение, а сумма. В этом случае мы уже не можем разделить нашу дробь на сумму нескольких простых дробей, а нужно каким-то образом постараться сделать так, чтобы в числителе стояло примерно такое же выражение как в знаменателе. В данном случае сделать это довольно просто:

Такая запись, которая на языке математики называется «добавление нуля», позволит нам вновь разделить дробь на два кусочка:

Теперь найдем то, что искали:

Вот и все вычисления. Несмотря на кажущуюся большую сложность, чем в предыдущей задаче, объем вычислений получился даже меньшим.

Нюансы решения

И вот в этом кроется основная сложность работы с табличными первообразными, особенно это заметно на второй задаче. Дело в том, что для того чтобы выделить какие-то элементы, которые легко считаются через таблицу, нам нужно знать, что конкретно мы ищем, и именно в поиске этих элементов и состоит все вычисление первообразных.

Другими словами, недостаточно просто зазубрить таблицу первообразных — нужно уметь видеть что-то, чего пока еще нет, но что подразумевал автор и составитель этой задачи. Именно поэтому многие математики, учителя и профессора постоянно спорят: «А что такое взятие первообразных или интегрирование — это просто инструмент либо это настоящее искусство?» На самом деле, лично на мой взгляд, интегрирование — это никакое не искусство — в нем нет ничего возвышенного, это просто практика и еще раз практика. И чтобы попрактиковаться, давайте решим еще три более серьезных примера.

Тренируемся в интегрировании на практике

Задача № 1

Запишем такие формулы:

\[{{x}^{n}}\to \frac{{{x}^{n+1}}}{n+1}\]

\[\frac{1}{x}\to \ln x\]

\[\frac{1}{1+{{x}^{2}}}\to \text{arctg}x\]

Давайте запишем следующее:

Задача № 2

Перепишем следующим образом:

Итого первообразная будет равна:

Задача № 3

Сложность этой задачи состоит в том, что в отличие от предыдущих функций сверху вообще отсутствует какая-либо переменная $x$, т.е. нам непонятно, что добавлять, вычитать, чтобы получить хоть что-то похожее на то, что стоит снизу. Однако, на самом деле, это выражение считается даже проще, чем любое выражение из предыдущих конструкций, потому что данную функцию можно переписать следующим образом:

Возможно, вы сейчас спросите: а почему эти функции равны? Давайте проверим:

Еще перепишем:

Немного преобразуем наше выражение:

И когда я все это объясняю своим ученикам, практически всегда возникает одна и та же проблема: с первой функцией все более-менее понятно, со второй тоже при везении или практике можно разобраться, но каким альтернативным сознанием нужно обладать, чтобы решить третий пример? На самом деле, не пугайтесь. Тот прием, который мы использовали при вычислении последней первообразной, называется «разложение функции на простейшие», и это очень серьезный прием, и ему будет посвящен отдельный видеоурок.

А пока предлагаю вернуться к тому, что мы только что изучили, а именно, к показательным функциям и несколько усложнить задачи с их содержанием.

Более сложные задачи на решение первообразных показательных функций

Задача № 1

Заметим следующее:

\[{{2}^{x}}\cdot {{5}^{x}}={{\left(2\cdot 5 \right)}^{x}}={{10}^{x}}\]

Чтобы найти первообразной этого выражения, достаточно просто воспользоваться стандартной формулой — ${{a}^{x}}\to \frac{{{a}^{x}}}{\ln a}$.

В нашем случае первообразная будет такая:

Разумеется, на фоне той конструкции, которую мы решали только что, эта выглядит более простой.

Задача № 2

Опять же, несложно заметить, что эту функцию несложно разделить на два отдельных слагаемых — две отдельных дроби. Перепишем:

Осталось найти первообразную от каждого от этих слагаемых по вышеописанной формуле:

Несмотря на кажущуюся большую сложность показательных функций по сравнению со степенными, общий объем вычислений и выкладок получился гораздо проще.

Конечно, для знающих учеников то, что мы только что разобрали (особенно на фоне того, что мы разобрали до этого), может показаться элементарными выражениями. Однако выбирая именно две эти задачи для сегодняшнего видеоурока, я не ставил себе цель рассказать вам еще один сложный и навороченный прием — все, что я хотел вам показать, так это то, что не стоит бояться использовать стандартные приемы алгебры для преобразования исходных функций.

Использование «секретного» приема

В заключение хотелось бы разобрать еще один интересный прием, который, с одной стороны выходит за рамки того, что мы сегодня в основном разбирали, но, с другой стороны, он, во-первых, отнюдь не сложный, т.е. его могут освоить даже начинающие ученики, а, во-вторых, он довольно часто встречается на всевозможных контрольных и самостоятельных работах, т.е. знание его будет очень полезно в дополнение к знанию таблицы первообразных.

Задача № 1

Очевидно, что перед нами что-то очень похожее на степенную функцию. Как нам поступить в этом случае? Давайте задумаемся: $x-5$ отличается от $x$ не так уж и сильно — просто добавили $-5$. Запишем так:

\[{{x}^{4}}\to \frac{{{x}^{5}}}{5}\]

\[{{\left(\frac{{{x}^{5}}}{5} \right)}^{\prime }}=\frac{5\cdot {{x}^{4}}}{5}={{x}^{4}}\]

Давайте попробуем найти производную от ${{\left(x-5 \right)}^{5}}$:

\[{{\left({{\left(x-5 \right)}^{5}} \right)}^{\prime }}=5\cdot {{\left(x-5 \right)}^{4}}\cdot {{\left(x-5 \right)}^{\prime }}=5\cdot {{\left(x-5 \right)}^{4}}\]

Отсюда следует:

\[{{\left(x-5 \right)}^{4}}={{\left(\frac{{{\left(x-5 \right)}^{5}}}{5} \right)}^{\prime }}\]

В таблице нет такого значения, поэтому мы сейчас сами вывели эту формулу, используя стандартную формулу первообразной для степенной функции. Давайте так и запишем ответ:

Задача № 2

Многим ученикам, которые посмотрят на первое решение, может показаться, что все очень просто: достаточно заменить в степенной функции $x$ на линейное выражение, и все станет на свои места. К сожалению, все не так просто, и сейчас мы в этом убедимся.

По аналогии с первым выражением запишем следующее:

\[{{x}^{9}}\to \frac{{{x}^{10}}}{10}\]

\[{{\left({{\left(4-3x \right)}^{10}} \right)}^{\prime }}=10\cdot {{\left(4-3x \right)}^{9}}\cdot {{\left(4-3x \right)}^{\prime }}=\]

\[=10\cdot {{\left(4-3x \right)}^{9}}\cdot \left(-3 \right)=-30\cdot {{\left(4-3x \right)}^{9}}\]

Возвращаясь к нашей производной, мы можем записать:

\[{{\left({{\left(4-3x \right)}^{10}} \right)}^{\prime }}=-30\cdot {{\left(4-3x \right)}^{9}}\]

\[{{\left(4-3x \right)}^{9}}={{\left(\frac{{{\left(4-3x \right)}^{10}}}{-30} \right)}^{\prime }}\]

Отсюда сразу следует:

Нюансы решения

Обратите внимание: если в прошлый раз по сути ничего не поменялось, то во втором случае вместо $-10$ появилось $-30$. На что отличается $-10$ и $-30$? Очевидно, что на множитель $-3$. Вопрос: откуда он взялся? Присмотревшись можно увидеть, что она взялась в результате вычислений производной сложной функции — тот коэффициент, который стоял при $x$, появляется в первообразной внизу. Это очень важное правило, которое я изначально вообще не планировал разбирать в сегодняшнем видеоуроке, но без него изложение табличных первообразных было бы неполным.

Итак, давайте еще раз. Пусть есть наша основная степенная функция:

\[{{x}^{n}}\to \frac{{{x}^{n+1}}}{n+1}\]

А теперь вместо $x$ давайте подставим выражение $kx+b$. Что тогда произойдет? Нам нужно найти следующее:

\[{{\left(kx+b \right)}^{n}}\to \frac{{{\left(kx+b \right)}^{n+1}}}{\left(n+1 \right)\cdot k}\]

На каком основании мы это утверждаем? Очень просто. Давайте найдем производную написанной выше конструкции:

\[{{\left(\frac{{{\left(kx+b \right)}^{n+1}}}{\left(n+1 \right)\cdot k} \right)}^{\prime }}=\frac{1}{\left(n+1 \right)\cdot k}\cdot \left(n+1 \right)\cdot {{\left(kx+b \right)}^{n}}\cdot k={{\left(kx+b \right)}^{n}}\]

Это то самое выражение, которое изначально и было. Таким образом, эта формула тоже верна, и ею можно дополнить таблицу первообразных, а лучше просто запомнить всю таблицу.

Выводы из «секретного: приема:

  • Обе функции, которые мы только что рассмотрели, на самом деле, могут быть сведены к первообразным, указанным в таблице, путем раскрытия степеней, но если с четвертой степенью мы еще более-менее как-то справимся, то вот девятую степень я бы вообще не рискнул раскрывать.
  • Если бы мы раскрыли степени, то мы бы получили такой объем вычислений, что простая задача заняла бы у нас неадекватно большое количество времени.
  • Именно поэтому такие задачи, внутри которых стоят линейные выражения, не нужно решать «напролом». Как только вы встречаете первообразную, которая отличается от той, что в таблице, лишь наличием выражения $kx+b$ внутри, сразу вспоминайте написанную выше формулу, подставляйте ее в вашу табличную первообразную, и все у вас получится намного быстрее и проще.

Естественно, в силу сложности и серьезности этого приема мы еще неоднократно вернемся к его рассмотрению в будущих видеоуроках, но на сегодня у меня все. Надеюсь, этот урок действительно поможет тем ученикам, которые хотят разобраться в первообразных и в интегрировании.

Решение интегралов - задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл... Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы? Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать интегралы и почему без этого никак нельзя обойтись.

Изучаем понятие "интеграл"

Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц , но суть вещей не изменилась. Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о , необходимые и для понимания интегралов, уже есть у нас в блоге.

Неопределенный интеграл

Пусть у нас есть какая-то функция f(x) .

Неопределенным интегралом функции f(x) называется такая функция F(x) , производная которой равна функции f(x) .

Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как читайте в нашей статье.


Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.

Простой пример:

Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями.

Полная таблица интегралов для студентов


Определенный интеграл

Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.

В качестве примера представим себе график какой-нибудь функции. Как найти площадь фигуры, ограниченной графиком функции?


С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:


Точки а и b называются пределами интегрирования.


Бари Алибасов и группа "Интеграл"

Кстати! Для наших читателей сейчас действует скидка 10% на

Правила вычисления интегралов для чайников

Свойства неопределенного интеграла

Как решать неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.

  • Производная от интеграла равна подынтегральной функции:

  • Константу можно выносить из-под знака интеграла:

  • Интеграл от суммы равен сумме интегралов. Верно также для разности:

Свойства определенного интеграла

  • Линейность:

  • Знак интеграла изменяется, если поменять местами пределы интегрирования:

  • При любых точках a , b и с :

Мы уже выяснили, что определенный интеграл - это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:

Примеры решения интегралов

Ниже рассмотрим несколько примеров нахождения неопределенных интегралов. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.


Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.

Первообразной функции f(x) на промежутке (a; b) называется такая функция F(x) , что выполняется равенство для любогох из заданного промежутка.

Если принять во внимание тот факт, что производная от константы С равна нулю, то справедливо равенство. Таким образом, функция f(x) имеет множество первообразных F(x)+C , для произвольной константы С , причем эти первообразные отличаются друг от друга на произвольную постоянную величину.

Определение неопределенного интеграла.

Все множество первообразных функции f(x) называется неопределенным интегралом этой функции и обозначается .

Выражение называютподынтегральным выражением , а f(x) подынтегральной функцией . Подынтегральное выражение представляет собой дифференциал функции f(x) .

Действие нахождения неизвестной функции по заданному ее дифференциалу называется неопределенным интегрированием, потому что результатом интегрирования является не одна функция F(x) , а множество ее первообразных F(x)+C .

Геометрический смысл неопределенного интеграла. График первообразной Д(х) называют интегральной кривой. В системе координат х0у графики всех первообразных от данной функции представляют семейство кривых, зависящих от величины постоянной С и получаемых одна из другой путем параллельного сдвига вдоль оси 0у. Для примера, рассмотренного выше, имеем:

J 2 х^х = х2 + C.

Семейство первообразных (х + С) геометрически интерпретируется совокупностью парабол.

Если из семейства первообразных нужно найти одну, то задают дополнительные условия, позволяющие определить постоянную С. Обычно с этой целью задают начальные условия: при значении аргумента х = х0 функция имеет значение Д(х0) = у0.

Пример. Требуется найти ту из первообразных функции у = 2 х, которая принимает значение 3 при х0 = 1.

Искомая первообразная: Д(х) = х2 + 2.

Решение. ^2х^х = х2 + C; 12 + С = 3; С = 2.

2. Основные свойства неопределенного интеграла

1. Производная неопределенного интеграла равна подинтегральной функции:

2. Дифференциал неопределенного интеграла равен подинтегральному выражению:

3. Неопределенный интеграл от дифференциала некоторой функции равен сумме самой этой функции и произвольной постоянной:

4. Постоянный множитель можно выносить за знак интеграла:

5. Интеграл суммы (разности) равен сумме (разности) интегралов:

6. Свойство является комбинацией свойств 4 и 5:

7. Свойство инвариантности неопределенного интеграла:

Если , то

8. Свойство:

Если , то

Фактически данное свойство представляет собой частный случай интегрирования при помощи метода замены переменной, который более подробно рассмотрен в следующем разделе.

Рассмотрим пример:

3. Метод интегрирования, при котором данный интеграл путем тождественных преобразований подынтегральной функции (или выражения) и применения свойств неопределенного интеграла приводится к одному или нескольким табличным интегралам, называется непосредственным интегрированием . При сведении данного интеграла к табличному часто используются следующие преобразования дифференциала (операция «подведения под знак дифференциала »):

Вообще, f’(u)du = d(f(u)). эта (формула очень часто используется при вычислении интегралов.

Найти интеграл

Решение. Воспользуемся свойствами интегралаи приведем данный интеграл к нескольким табличным.

4. Интегрирование методом подстановки.

Суть метода заключается в том, что мы вводим новую переменную, выражаем подынтегральную функцию через эту переменную, в результате приходим к табличному (или более простому) виду интеграла.

Очень часто метод подстановки выручает при интегрировании тригонометрических функций и функций с радикалами.

Пример.

Найти неопределенный интеграл .

Решение.

Введем новую переменную . Выразимх через z :

Выполняем подстановку полученных выражений в исходный интеграл:

Из таблицы первообразных имеем .

Осталось вернуться к исходной переменной х :

Ответ:

Конспект урока по алгебре и началам анализа для учащихся 11 класса средних общеобразовательных учреждений

На тему: «Правила нахождения первообразных»

Цель урока:

Образовательная: ввести правила нахождения первообразных с помощью их табличных значений и использовать их при решении задач.

Задачи:

    ввести определение операции интегрирования;

    познакомить учащихся с таблицей первообразных;

    познакомить учащихся с правилами интегрирования;

    научить учащихся применять таблицу первообразных и правила интегрирования при решении задач.

Развивающая: способствовать развитию у учащихся умения анализировать, сопоставлять данные, делать выводы.

Воспитательная: способствовать формированию навыков коллективной и самостоятельной работы, формировать умения аккуратно и грамотно выполнять математические записи.

Методы обучения: индуктивно-репродуктивный, дедуктивно-репродук-

тивный.

Тип урока: усвоение новых знаний.

Требования к ЗУН:

Учащиеся должны знать:

- определение операции интегрирования;

Таблицу первообразных;

учащиеся должны уметь:

Применять таблицу первообразных при решении задач;

Решать задачи, в которых необходимо находить первообразные.

Оборудование: компьютер, экран, мультимедиа проектор, презентация.

Литература:

1. А.Г. Мордкович и др. «Алгебра и начала анализа. Задачник для 10-11 класса» М.: Мнемозина, 2001.

2. Ш.А. Алимов «Алгебра и начала анализа. 10-11 класс. Учебник» М.: Просвещение, 2004. - 384с.

3. Методика и технология обучения математике. М.: Дрофа, 2005. – 416 с.

Структура урока:

I . Организационный момент (2 мин.)

II . Актуализация знаний (7 мин.)

III . Изучение нового материала (15 мин.)

VI . Закрепление изученного материала (17 мин.)

V . Подведение итогов и Д/З (4 мин.)

Ход урока

I . Организационный момент

Приветствие учащихся, проверка отсутствующих и готовности помещения к уроку.

II . Актуализация знаний

Запись на доске (в тетрадях)

Дата.

Классная работа

Правила нахождения первообразных.

Учитель: Тема сегодняшнего урока: «Правила нахождения первообразных» (слайд 1). Но прежде, чем перейти к изучению новой темы вспомним пройденный материал.

К доске вызываются двое учеников, каждому дается индивидуальное задание (если ученик справился с заданием без ошибок, то он получает отметку «5»).

Карточки с заданиями

№ 1

у = 6х – 2х 3 .

f ( x )=3 x 2 +4 x –1 в точке x =3.

№ 2

2) Найдите значение производной функции f ( x )=5 x 2 +5 x 5 в точке x =1.

Решение

Карточка № 1

1) Найти интервалы возрастания и убывания функции у = 6х – 2х 3 .

; Пусть , тогда , сдедовательно ; х 1 и х 2 стационарные точки;

2. Стационарные точки разбивают координатную прямую на три интервала. В тех интервалах, где производная функции положительна сама функция возрастает, где отрицательна – убывает.

- + -

у -1 1

Следовательно у убывает при х (- ;-1) (1; ) и возрастает при х (-1;1).

2) f ( x )=3 x 2 +4 x –1 ; ; .

Карточка № 2

1) Найти точки экстремума функции .

1. Найдем стационарные точки, для этого найдем производную данной функции, затем приравняем её к нулю и решим полученное уравнение, корнями которого и будут являться стационарные точки.

; Пусть , тогда , следовательно, , и .

2. Стационарные точки разбивают координатную прямую на четыре интервала. Те точки, при переходе через которые производная функции меняет знак, являются точками экстремума.

+ - - +

у -3 0 3

Значит - точки экстремума, причем - точка максимума, а - точка минимума.

2) f ( x )=5 x 2 +5 x 5; ; .

Пока, вызванные к доске ученики решают примеры остальному классу задаются теоретические вопросы. В процессе опроса учитель следит, справились ученики с заданием или нет.

Учитель: Итак, давайте ответим на несколько вопросов. Вспомним, какая функция называется первообразной? (слайд 2)

Ученик: Функция F ( x ) называется первообразной функции f ( x ) на некотором промежутке, если для всех x из этого промежутка .

(слайд 2).

Учитель: Верно. А как называется процесс нахождения производной функции? (слайд 3)

Ученик: Дифференцированием.

После ответа учащегося, правильный ответ дублируется на слайде (слайд 3).

Учитель: Каким образом показать, что функция F ( x ) является первообразной для функции f ( x ) ? (слайд 4).

Ученик: Найти производную функции F ( x ) .

После ответа учащегося, правильный ответ дублируется на слайде (слайд 4).

Учитель: Хорошо. Тогда скажите, является ли функция F ( x )=3 x 2 +11 x первообразной для функции f ( x )=6х+10 ? (слайд 5)

Ученик: Нет, т.к. производная функции F ( x )=3 x 2 +11 x равна 6х+11 , а не 6х+10 .

После ответа учащегося, правильный ответ дублируется на слайде (слайд 5).

Учитель: Какое количество первообразных можно найти для некоторой функции f ( x ) ? Ответ обоснуйте. (слайд 6)

Ученик: Бесконечно много, т.к. к полученной функции мы всегда прибавляем константу, которая может быть любым вещественным числом.

После ответа учащегося, правильный ответ дублируется на слайде (слайд 6).

Учитель: Верно. Сейчас давайте вместе проверим решение учеников работавших у доски.

Ученики совместно с учителем проверяют решение.

III . Изучение нового материала

Учитель: Обратную операцию нахождения первообразной для данной функции называют интегрированием (от латинского слова integrare – восстанавливать). Таблицу первообразных для некоторых функций можно составить, используя таблицу производных. Например, зная, что , получаем , откуда следует, что все первообразные функции записываются в виде , где C – произвольная постоянная.

Запись на доске (в тетрадях)

получаем ,

откуда следует, что все первообразные функции записываются в виде , где C – произвольная постоянная.

Учитель: Откройте учебники на странице 290. Здесь приведена таблица первообразных. Также она представлена на слайде. (слайд 7)

Учитель: Правила интегрирования можно получить с помощью правил дифференцирования. Рассмотрим следующие правила интегрирования: пусть F ( x ) и G ( x ) – первообразные соответственно функций f ( x ) и g ( x ) на некотором промежутке. Тогда:

1) Функция ;

2) Функция является первообразной функции . (слайд 8)

Запись на доске (в тетрадях)

1) Функция является первообразной функции ;

2) Функция является первообразной функции .

VI . Закрепление изученного материала

Учитель: Переходим к практической части урока. Найти одну из первообразных функции Решаем у доски.

Ученик: Чтобы найти первообразную данной функции нужно использовать правило интегрирования: функция является первообразной функции .

Учитель: Верно, что еще необходимо знать для нахождения первообразной данной функции?

Ученик: Также будем использовать таблицу первообразных для функций , при p =2 и для является функция ;

2) Функция является первообразной функции .

Учитель: Все правильно.

Домашнее задание

§55, № 988 (2, 4, 6), № 989 (2, 4, 6, 8), № 990 (2, 4, 6), № 991 (2, 4, 6, 8). (слайд 9)

Выставление отметок.

Учитель: Урок окончен. Можете быть свободны.