Общие теоремы динамики теоретическая механика. Теоретическая механика. Теорема о кинетической энергии

ТЕОРЕМА КОЛИЧЕСТВА ДВИЖЕНИЯ (в дифференциальной форме) .

1. Для точки: производная от количества движения точки по времени равна равнодействующей приложенных к точке сил :

или в координатной форме:

2. Для системы: производная от количества движения системы по времени равна главному вектору внешних сил системы (векторной сумме внешних сил , приложенных к системе):

или в координатной форме:

ТЕОРЕМА ИМПУЛЬСОВ (теорема количества движения в конечной форме).

1. Для точки: изменение количества движения точки за конечный промежуток времени равно сумме импульсов, приложенных к точке сил (или импульсу равнодействующей приложенных к точке сил)

или в координатной форме:

2. Для системы: изменение количества движения системы за конечный промежуток времени равно сумме импульсов внешних сил:

или в координатной форме:

Следствия: при отсутствии внешних сил количество движения системы есть величина постоянная; если внешние силы системы перпендикулярны некоторой оси, то проекция количества движения на эту ось есть величина постоянная.

ТЕОРЕМА О МОМЕНТЕ КОЛИЧЕСТВА ДВИЖЕНИЯ

1. Для точки: Производная по времени от момента количества движения точки относительно некоторого центра (оси) равна сумме моментов приложенных к точке сил относительно того же центра (оси):

2. Для системы:

Производная по времени от момента количества движения системы относительно некоторого центра (оси) равна сумме моментов внешних сил системы относительно того же центра (оси):

Следствия: если внешние силы системы не дают момента относительно данного центра (оси), то момент количества движения системы относительно этого центра (оси) есть величина постоянная.

Если силы, приложенные к точке, не дают момента относительно данного центра, то момент количества движения точки относительно этого центра есть величина постоянная и точка описывает плоскую траекторию.

ТЕОРЕМА О КИНЕТИЧЕСКОЙ ЭНЕРГИИ

1. Для точки: изменение кинетической энергии точки на конечном ее перемещении равно работе приложенных к ней активных сил (касательные составляющие реакций неидеальных связей включаются в число активных сил):

Для случая относительного движения: изменение кинетической энергии точки при относительном движении равно работе приложенных к ней активных сил и переносной силы инерции (см. "Частные случаи интегрирования") :

2. Для системы: изменение кинетической энергии системы на некотором перемещении ее точек равно работе приложенных к ней внешних активных сил и внутренних сил, приложенных к точкам системы, расстояние между которыми меняется:

Если система неизменяема (твердое тело), то ΣA i =0 и изменение кинетической энергии равно работе только внешних активных сил.

ТЕОРЕМА О ДВИЖЕНИИ ЦЕНТРА МАСС МЕХАНИЧЕСКОЙ СИСТЕМЫ . Центр масс механической системы движется как точка, масса которой равна массе всей системы M=Σm i , к которой приложены все внешние силы системы:

или в координатной форме:

где - ускорение центра масс и его проекции на оси декартовых координат; внешняя сила и ее проекции на оси декартовых координат.

ТЕОРЕМА ИМПУЛЬСОВ ДЛЯ СИСТЕМЫ, ВЫРАЖЕННАЯ ЧЕРЕЗ ДВИЖЕНИЕ ЦЕНТРА МАСС.

Изменение скорости центра масс системы за конечный промежуток времени равно импульсу внешних сил системы за тот же промежуток времени, деленному на массу всей системы.

Общие теоремы динамики - это теорема о движении центра масс механической системы, теорема об изменении количества движения, теорема об изменении главного момента количества движения (кинетического момента) и теорема об изменении кинетической энергии механической системы.

Теорема о движении центра масс механической системы

Теорема о движении центра масс.
Произведение массы системы на ускорение ее центра масс равно векторной сумме всех действующих на систему внешних сил:
.

Здесь M - масса системы:
;
a C - ускорение центра масс системы:
;
v C - скорость центра масс системы:
;
r C - радиус вектор (координаты) центра масс системы:
;
- координаты (относительно неподвижного центра) и массы точек, из которых состоит система.

Теорема об изменении количества движения (импульса)

Количество движения (импульс) системы равно произведению массы всей системы на скорость ее центра масс или сумме количества движения (сумме импульсов) отдельных точек или частей, составляющих систему:
.

Теорема об изменении количества движения в дифференциальной форме.
Производная по времени от количества движения (импульса) системы равна векторной сумме всех действующих на систему внешних сил:
.

Теорема об изменении количества движения в интегральной форме.
Изменение количества движения (импульса) системы за некоторый промежуток времени равно сумме импульсов внешних сил за тот же промежуток времени:
.

Закон сохранения количества движения (импульса).
Если сумма всех внешних сил, действующих на систему, равна нулю, то вектор количества движения системы будет постоянным. То есть все его проекции на оси координат будут сохранять постоянные значения.

Если сумма проекций внешних сил на какую либо ось равна нулю, то проекция количества движения системы на эту ось будет постоянной.

Теорема об изменении главного момента количества движения (теорема моментов)

Главным моментом количества движения системы относительно данного центра O называется величина , равная векторной сумме моментов количеств движения всех точек системы относительно этого центра:
.
Здесь квадратные скобки обозначают векторное произведение.

Закрепленные системы

Следующая ниже теорема относится к случаю, когда механическая система имеет неподвижную точку или ось, которая закреплена относительно инерциальной системы отсчета. Например тело, закрепленное сферическим подшипником. Или система тел, совершающая движение вокруг неподвижного центра. Это также может быть неподвижная ось, вокруг которой вращается тело или система тел. В этом случае, под моментами следует понимать моменты импульса и сил относительно закрепленной оси.

Теорема об изменении главного момента количества движения (теорема моментов)
Производная по времени от главного момента количества движения системы относительно некоторого неподвижного центра O равна сумме моментов всех внешних сил системы относительно того же центра.

Закон сохранения главного момента количества движения (момента импульса).
Если сумма моментов всех приложенных к системе внешних сил относительно данного неподвижного центра O равна нулю, то главный момент количества движения системы относительно этого центра будет постоянным. То есть все его проекции на оси координат будут сохранять постоянные значения.

Если сумма моментов внешних сил относительно некоторой неподвижной оси равна нулю, то момент количества движения системы относительно этой оси будет постоянным.

Произвольные системы

Следующая далее теорема имеет универсальный характер. Она применима как к закрепленным системам, так и к свободно движущимся. В случае закрепленных систем нужно учитывать реакции связей в закрепленных точках. Она отличается от предыдущей теоремы тем, что вместо закрепленной точки O следует брать центр масс C системы.

Теорема моментов относительно центра масс
Производная по времени от главного момента количества движения системы относительно центра масс C равна сумме моментов всех внешних сил системы относительно того же центра.

Закон сохранения момента импульса.
Если сумма моментов всех приложенных к системе внешних сил относительно центра масс C равна нулю, то главный момент количества движения системы относительно этого центра будет постоянным. То есть все его проекции на оси координат будут сохранять постоянные значения.

Момент инерции тела

Если тело вращается вокруг оси z с угловой скоростью ω z , то его момент количества движения (кинетический момент) относительно оси z определяется по формуле:
L z = J z ω z ,
где J z - момент инерции тела относительно оси z .

Момент инерции тела относительно оси z определяется по формуле:
,
где h k - расстояние от точки массой m k до оси z .
Для тонкого кольца массы M и радиуса R или цилиндра, масса которого распределена по его ободу,
J z = M R 2 .
Для сплошного однородного кольца или цилиндра,
.

Теорема Штейнера-Гюйгенса.
Пусть Cz - ось, проходящая через центр масс тела, Oz - параллельная ей ось. Тогда моменты инерции тела относительно этих осей связаны соотношением:
J Oz = J Cz + M a 2 ,
где M - масса тела; a - расстояние между осями.

В более общем случае :
,
где - тензор инерции тела.
Здесь - вектор, проведенный из центра масс тела в точку с массой m k .

Теорема об изменении кинетической энергии

Пусть тело массы M совершает поступательное и вращательное движение с угловой скоростью ω вокруг некоторой оси z . Тогда кинетическая энергия тела определяется по формуле:
,
где v C - скорость движения центра масс тела;
J Cz - момент инерции тела относительно оси, проходящей через центр масс тела параллельно оси вращения. Направление оси вращения может меняться со временем. Указанная формула дает мгновенное значение кинетической энергии.

Теорема об изменении кинетической энергии системы в дифференциальной форме.
Дифференциал (приращение) кинетической энергии системы при некотором ее перемещении равно сумме дифференциалов работ на этом перемещении всех приложенных к системе внешних и внутренних сил:
.

Теорема об изменении кинетической энергии системы в интегральной форме.
Изменение кинетической энергии системы при некотором ее перемещении равно сумме работ на этом перемещении всех приложенных к системе внешних и внутренних сил:
.

Работа, которую совершает сила , равна скалярному произведению векторов силы и бесконечно малому перемещению точки ее приложения :
,
то есть произведению модулей векторов F и ds на косинус угла между ними.

Работа, которую совершает момент сил , равна скалярному произведению векторов момента и бесконечно малого угла поворота :
.

Принцип Даламбера

Суть принципа Даламбера состоит в том, чтобы задачи динамики свести к задачам статики. Для этого предполагают (или это заранее известно), что тела системы имеют определенные (угловые) ускорения. Далее вводят силы инерции и (или) моменты сил инерции, которые равны по величине и обратные по направлению силам и моментам сил, которые по законам механики создавали бы заданные ускорения или угловые ускорения

Рассмотрим пример. Путь тело совершает поступательное движение и на него действуют внешние силы . Далее мы предполагаем, что эти силы создают ускорение центра масс системы . По теореме о движении центра масс, центр масс тела имел бы такое же ускорение, если бы на тело действовала сила . Далее мы вводим силу инерции:
.
После этого задача динамики:
.
;
.

Для вращательного движения поступают аналогичным образом. Пусть тело вращается вокруг оси z и на него действуют внешние моменты сил M e zk . Мы предполагаем, что эти моменты создают угловое ускорение ε z . Далее мы вводим момент сил инерции M И = - J z ε z . После этого задача динамики:
.
Превращается в задачу статики:
;
.

Принцип возможных перемещений

Принцип возможных перемещений применяется для решений задач статики. В некоторых задачах, он дает более короткое решение, чем составление уравнений равновесия. Особенно это касается систем со связями (например, системы тел, соединенные нитями и блоками), состоящих из множества тел

Принцип возможных перемещений .
Для равновесия механической системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на нее активных сил при любом возможном перемещении системы была равна нулю.

Возможное перемещение системы - это малое перемещение, при котором не нарушаются связи, наложенные на систему.

Идеальные связи - это связи, которые не совершают работы при перемещении системы. Точнее, сумма работ, совершаемая самими связями при перемещении системы равна нулю.

Общее уравнение динамики (принцип Даламбера - Лагранжа)

Принцип Даламбера - Лагранжа - это объединение принцип Даламбера с принципом возможных перемещений. То есть, при решении задачи динамики, мы вводим силы инерции и сводим задачу к задаче статики, которую решаем с помощью принципа возможных перемещений.

Принцип Даламбера - Лагранжа .
При движении механической системы с идеальными связями в каждый момент времени сумма элементарных работ всех приложенных активных сил и всех сил инерции на любом возможном перемещении системы равна нулю:
.
Это уравнение называют общим уравнением динамики .

Уравнения Лагранжа

Обобщенные координаты q 1 , q 2 , ..., q n - это совокупность n величин, которые однозначно определяют положение системы.

Число обобщенных координат n совпадает с числом степеней свободы системы.

Обобщенные скорости - это производные от обобщенных координат по времени t .

Обобщенные силы Q 1 , Q 2 , ..., Q n .
Рассмотрим возможное перемещение системы, при котором координата q k получит перемещение δq k . Остальные координаты остаются неизменными. Пусть δA k - это работа, совершаемая внешними силами при таком перемещении. Тогда
δA k = Q k δq k , или
.

Если, при возможном перемещении системы, изменяются все координаты, то работа, совершаемая внешними силами при таком перемещении, имеет вид:
δA = Q 1 δq 1 + Q 2 δq 2 + ... + Q n δq n .
Тогда обобщенные силы являются частными производными от работы по перемещениям:
.

Для потенциальных сил с потенциалом Π ,
.

Уравнения Лагранжа - это уравнения движения механической системы в обобщенных координатах:

Здесь T - кинетическая энергия. Она является функцией от обобщенных координат, скоростей и, возможно, времени. Поэтому ее частная производная также является функцией от обобщенных координат, скоростей и времени. Далее нужно учесть, что координаты и скорости являются функциями от времени. Поэтому для нахождения полной производной по времени нужно применить правило дифференцирования сложной функции:
.

Использованная литература:
С. М. Тарг, Краткий курс теоретической механики, «Высшая школа», 2010.


Динамика:
Динамика материальной системы
§ 35. Теорема о движении центра масс материальной системы

Задачи с решениями

35.1 Определить главный вектор внешних сил, действующих на маховик M, вращающийся вокруг оси AB. Ось AB, укрепленная в круговой раме, в свою очередь вращается вокруг оси DE. Центр масс C маховика находится в точке пересечения осей AB и DE.
РЕШЕНИЕ

35.2 Определить главный вектор внешних сил, приложенных к линейке AB эллипсографа, изображенного на рисунке. Кривошип OC вращается с постоянной угловой скоростью ω; масса линейки AB равна M; OC=AC=BC=l.
РЕШЕНИЕ

35.3 Определить главный вектор внешних сил, действующих на колесо массы M, скатывающееся с наклонной плоскости вниз, если его центр масс C движется по закону xC=at2/2.
РЕШЕНИЕ

35.4 Колесо катится со скольжением по горизонтальной прямой под действием силы F, изображенной на рисунке. Найти закон движения центра масс C колеса, если коэффициент трения скольжения равен f, a F=5fP, где P вес колеса. В начальный момент колесо находилось в покое.
РЕШЕНИЕ

35.5 Колесо катится со скольжением по горизонтальной прямой под действием приложенного к нему вращающего момента. Найти закон движения центра масс C колеса, если коэффициент трения скольжения равен f. В начальный момент колесо находилось в покое.
РЕШЕНИЕ

35.6 Вагон трамвая совершает вертикальные гармонические колебания на рессорах амплитуды 2,5 см и периода T=0,5 c. Масса кузова с нагрузкой 10 т, масса тележки и колес 1 т. Определить силу давления вагона на рельсы.
РЕШЕНИЕ

35.7 Определить силу давления на грунт насоса для откачки воды при его работе вхолостую, если масса неподвижных частей корпуса D и фундамента E равна M1, масса кривошипа OA=a равна M2, масса кулисы B и поршня C равна M3. Кривошип OA, вращающийся равномерно с угловой скоростью ω, считать однородным стержнем.
РЕШЕНИЕ

35.8 Использовав данные предыдущей задачи, считать, что насос установлен на упругом основании, коэффициент упругости которого равен c. Найти закон движения оси O кривошипа OA по вертикали, если в начальный момент ось O находилась в положении статического равновесия и ей была сообщена по вертикали вниз скорость v0. Взять начало отсчета оси x, направленной вертикально вниз, в положении статического равновесия оси O. Силами сопротивления пренебречь.
РЕШЕНИЕ

35.9 Ножницы для резки металла состоят из кривошипно-ползунного механизма OAB, к ползуну B которого прикреплен подвижный нож. Неподвижный нож укреплен на фундаменте C. Определить давление фундамента на грунт, если длина кривошипа r, масса кривошипа M1, длина шатуна l, масса ползуна B с подвижным ножом M2, масса фундамента C и корпуса D равна M3. Массой шатуна пренебречь. Кривошип OA, равномерно вращающийся с угловой скоростью ω, считать однородным стержнем.
РЕШЕНИЕ

35.10 Электрический мотор массы M1 установлен без креплений на гладком горизонтальном фундаменте; на валу мотора под прямым углом закреплен одним концом однородный стержень длины 2l и массы M2, на другой конец стержня насажен точечный груз массы M3; угловая скорость вала равна ω. Определить: 1) горизонтальное движение мотора; 2) наибольшее горизонтальное усилие R, действующее на болты, если ими будет закреплен кожух электромотора на фундаменте.
РЕШЕНИЕ

35.11 По условиям предыдущей задачи вычислить ту угловую скорость ω вала электромотора, при которой электромотор будет подпрыгивать над фундаментом, не будучи к нему прикреплен болтами.
РЕШЕНИЕ

35.12 При сборке электромотора его ротор B был эксцентрично насажен на ось вращения C1 на расстоянии C1C2=a, где C1 центр масс статора A, а C2 центр масс ротора B. Ротор равномерно вращается с угловой скоростью ω. Электромотор установлен посередине упругой балки, статический прогиб которой равен Δ; M1 масса статора, M2 масса ротора. Найти уравнение движения точки C1 по вертикали, если в начальный момент она находилась в покое в положении статического равновесия. Силами сопротивления пренебречь. Начало отсчета оси x взять в положении статического равновесия точки C1.
РЕШЕНИЕ

35.13 Электрический мотор массы M1 установлен на балке, жесткость которой равна c. На вал мотора насажен груз массы M2 на расстоянии l от оси вала. Угловая скорость мотора ω=const. Определить амплитуду вынужденных колебаний мотора и критическое число его оборотов в минуту, пренебрегая массой балки и сопротивлением движению.
РЕШЕНИЕ

35.14 На рисунке изображена крановая тележка A массы M1, которая заторможена посередине балки BD. В центре масс C1 тележки подвешен трос длины l с привязанным к нему грузом C2 массы M2. Трос с грузом совершает гармонические колебания в вертикальной плоскости. Определить: 1) суммарную вертикальную реакцию балки BD, считая ее жесткой; 2) закон движения точки C1 в вертикальном направлении, считая балку упругой с коэффициентом упругости, равным c. В начальный момент балка, будучи недеформированной, находилась в покое в горизонтальном положении. Считая колебания троса малыми, принять: sin φ≈φ, cos φ≈1. Начало отсчета оси y взять в положении статического равновесия точки C1. Массой троса и размерами тележки по сравнению с длиной балки пренебречь.
РЕШЕНИЕ

35.15 Сохранив данные предыдущей задачи и считая балку BD жесткой, определить: 1) суммарную горизонтальную реакцию рельсов; 2) в предположении, что тележка не заторможена, закон движения центра масс C1 тележки A вдоль оси x. В начальный момент точка C1 находилась в покое в начале отсчета оси x. Трос совершает колебания по закону φ=φ0 cos ωt.
РЕШЕНИЕ

35.16 На средней скамейке лодки, находившейся в покое, сидели два человека. Один из них, массы M1=50 кг, переместился вправо на нос лодки. В каком направлении и на какое расстояние должен переместиться второй человек массы M2=70 кг для того, чтобы лодка осталась в покое? Длина лодки 4 м. Сопротивлением воды движению лодки пренебречь.
РЕШЕНИЕ

35.17 На однородную призму A, лежащую на горизонтальной плоскости, положена однородная призма B; поперечные сечения призм прямоугольные треугольники, масса призмы A втрое больше массы призмы B. Предполагая, что призмы и горизонтальная плоскость идеально гладкие, определить длину l, на которую передвинется призма A, когда призма B, спускаясь по A, дойдет до горизонтальной плоскости.
РЕШЕНИЕ

35.18 По горизонтальной товарной платформе длины 6 м и массы 2700 кг, находившейся в начальный момент в покое, двое рабочих перекатывают тяжелую отливку из левого конца платформы в правый. В какую сторону и насколько переместится при этом платформа, если общая масса груза и рабочих равна 1800 кг? Силами сопротивления движению платформы пренебречь.
РЕШЕНИЕ

35.19 Два груза M1 и M2, соответственно массы M1 и M2, соединенные нерастяжимой нитью, переброшенной через блок A, скользят по гладким боковым сторонам прямоугольного клина, опирающегося основанием BC на гладкую горизонтальную плоскость. Найти перемещение клина по горизонтальной плоскости при опускании груза M1 на высоту h=10 см. Масса клина M=4M1=16M2; массой нити и блока пренебречь.
РЕШЕНИЕ

35.20 Три груза массы M1=20 кг, M2=15 кг и M3=10 кг соединены нерастяжимой нитью, переброшенной через неподвижные блоки L и N. При опускании груза M1 вниз груз M2 перемещается по верхнему основанию четырехугольной усеченной пирамиды ABCD массы M=100 кг вправо, а груз M3 поднимается по боковой грани AB вверх. Пренебрегая трением между усеченной пирамидой ABCD и полом, определить перемещение усеченной пирамиды ABCD относительно пола, если груз M1 опустится вниз на 1 м. Массой нити пренебречь.
РЕШЕНИЕ

35.21 Подвижной поворотный кран для ремонта уличной электросети установлен на автомашине массы 1 т. Люлька K крана, укрепленная на стержне L, может поворачиваться вокруг горизонтальной оси O, перпендикулярной плоскости рисунка. В начальный момент кран, занимавший горизонтальное положение, и автомашина находились в покое. Определить перемещение незаторможенной автомашины, если кран повернулся на 60°. Масса однородного стержня L длины 3 м равна 100 кг, а люльки K 200 кг. Центр масс C люльки K отстоит от оси O на расстоянии OC=3,5 м. Сопротивлением движению пренебречь.

Рассмотрим движение некоторой системы материальных томен относительно неподвижной системы координат Когда система несвободна, то ее можно рассматривать как свободную, если отбросить наложенные на систему связи и заменить их действие соответствующими реакциями.

Разобьем все силы, приложенные к системе, на внешние и внутренние; в те и другие могут входить реакции отброшенных

связей. Через и обозначим главный вектор и главный момент внешних сил относительно точки А.

1. Теорема об изменении количества движения. Если - количество движения системы, то (см. )

т. е. справедлива теорема: производная по времени от количества движения системы равняется главному вектору всех внешних сил.

Заменяя вектор через его выражение где - масса-системы, - скорость центра масс, уравнению (4.1) можно придать другую форму:

Это равенство означает, что центр масс системы движется, как материальная точкащ масса которой равна массе системы и к которой приложена сила, геометрически равная главному вектору всех внешних сил системы. Последнее утверждение называют теоремой о движении центра масс (центра инерции) системы.

Если то из (4.1) следует, что вектор количества движения постоянен по величине и направлению. Проектируя его на оси координат, получим три скалярных первых интеграла, дифференциальных уравнений двнзкепня системы:

Эти интегралы носят назвапие интегралов количества движения. При скорость центра масс постоянна, т. е. он движется равномерно и прямолинейно.

Если проекция главного вектора внешних сил на какую-либо одну ось, например на ось равна нулю, то имеем один первый интеграл или если же равны нулю» две проекции главного вектора, то существует два интеграла количества движения.

2. Теорема об изменении кинетического момента. Пусть А - некоторая произвольная точка пространства (движущаяся или неподвижная), которая не обязательно совпадает с какой-либо определенной материальной точкой системы во все время движения. Ее скорость в неподвижной спстеме координат обозначим через Теорема об изменении кинетического момента материальной системы относительно точки А имеет вид

Если точка А неподвижна, то и равенство (4.3) принимает более простой вид:

Это равенство выражает теорему об пзмепении кинетического момента системы относительно неподвижной точки: производная по времени от кинетического момента системы, вычисленного относительно некоторой неподвижной точки, равняется главному моменту всех внешних сил относительно этой точки.

Если то согласно (4.4) вектор кинетического момента постоянен по величине и направлению. Проектируя его на оси координат, получим скалярных первых интеграла дифференциальных уравнений двпжеиия системы:

Эти интегралы посят название интегралов кинетического момента или интегралов площадей.

Если точка А совпадает с центром масс системы, то Тогда первое слагаемое в правой части равенства (4.3) обращается в нуль и теорема об изменении кинетического момента имеет ту же форму записи (4.4), что и в случае неподвижной точки А. Отметим (см. п. 4 § 3), что в рассматриваемом случае абсолютный кинетический момент системы в левой части равенства (4.4) может быть заменен равный ему кинетический момент системы в ее движении относительно центра масс.

Пусть - некоторая неизменная ось пли ось неизменного направления, проходящая через центр масс системы, а - кинетический момент системы относительно этой оси. Из (4.4) следует, что

где - момент внешних сил относительно оси . Если во все время движения то имеем первый интеграл

В работах С. А. Чаплыгина получено несколько обобщений теоремы об изменении кинетического момента, которые применены затем при решении ряда задач о качении шаров. Дальнейшие обобщения теоремы об изменении кпнетпческога момента и их приложения в задачах дннамики твердого тела содержатся в работах . Основные результаты этих работ связаны с теоремой об изменении кинетического момента относительно подвижной , постоянно проходящей через некоторую движущуюся точку А. Пусть - единичный вектор, направленный вдоль этой оси. Умножив скалярно на обе части равенства (4.3) и добавив к его обепм частям слагаемое получим

При выполнении кинематического условия

из (4.7) следует уравнение (4.5). И если во все время движения и выполняется условие (4.8), то существует первый интеграл (4.6).

Если связи системы идеальны и допускают в числе виртуальных перемещений вращения системы как твердого тела вокруг оси и, то главный момент реакций относительно оси и равен нулю , и тогда величина в правой части уравнения (4.5) представляет собой главный момент всех внешних активных сил относительно оси и. Равенство нулю этого момента и выполнимость соотношения (4.8) будут в рассматриваемом случае достаточными условиями для существования интеграла (4.6).

Если направление оси и неизменно то условие (4.8) запишется в виде

Это равенство означает, что проекции скорости центра масс и скорости точки А оси и на плоскость, перпендикулярную этой являются параллельными. В работе С. А. Чаплыгина вместо (4.9) требуется выполнение менее общего условия где X - произвольная постоянная величина.

Заметим, что условие (4.8) не зависит от выбора точки на . Действительно , пусть Р - произвольная точка на оси . Тогда

и, следовательно,

В заключение отметим геометрическую интерпретацию Резаля уравнений (4.1) и (4.4): векторы абсолютных скоростей концов векторов и равны соогвегственно главному вектору и главному моменту всех внешних сил относительно точки А.