Видеоурок «Аксиома параллельных прямых. Аксиома параллельных прямых Что такое аксиома параллельности

Изучая свойства геометрических фигур, мы доказали ряд теорем. При этом мы опирались, как правило, на доказанные ранее теоремы. А на чём основаны доказательства самых первых теорем геометрии? Ответ на этот вопрос такой: некоторые утверждения о свойствах геометрических фигур принимаются в качестве исходных положений, на основе которых доказываются далее теоремы и вообще строится вся геометрия. Такие исходные положения называются аксиомами .

Некоторые аксиомы были сформулированы ещё в первой главе (хотя они и не назывались там аксиомами). Например, аксиомой является утверждение о том, что

Многие другие аксиомы, хотя и не были выделены особо, но фактически использовались в наших рассуждениях. Так, сравнение двух отрезков мы проводили с помощью наложения одного отрезка на другой. Возможность такого наложения вытекает из следующей аксиомы:

Сравнение двух углов основано на аналогичной аксиоме:

Все эти аксиомы являются наглядно очевидными и не вызывают сомнений. Само слово «аксиома» происходит от греческого «аксиос», что означает «ценный, достойный». Полный список аксиом планиметрии, принятых в нашем курсе геометрии, мы приводим в конце учебника.

Такой подход к построению геометрии, когда сначала формулируются исходные положения - аксиомы, а затем на их основе путём логических рассуждений доказываются другие утверждения, зародился ещё в глубокой древности и был изложен в знаменитом сочинении «Начала» древнегреческого учёного Евклида. Некоторые из аксиом Евклида (часть из них он называл постулатами ) и сейчас используются в курсах геометрии, а сама геометрия, изложенная в «Началах», называется евклидовой геометрией . В следующем пункте мы познакомимся с одной из самых известных аксиом геометрии.

Аксиома параллельных прямых

Рассмотрим произвольную прямую а и точку М, не лежащую на ней (рис. 110, а). Докажем, что через точку М можно провести прямую, параллельную прямой а. Для этого проведём через точку М две прямые: сначала прямую с перпендикулярно к прямой а, а затем прямую b перпендикулярно к прямой с (рис. 110, (б). Так как прямые а и b перпендикулярны к прямой с, то они параллельны.

Рис. 110

Итак, через точку М проходит прямая b, параллельная прямой а. Возникает следующий вопрос: можно ли через точку М провести ещё одну прямую, параллельную прямой а?

Нам представляется, что если прямую b «повернуть» даже на очень малый угол вокруг точки М, то она пересечёт прямую а (прямая b" на рисунке 110,6). Иными словами, нам кажется, что через точку М нельзя провести другую прямую (отличную от b), параллельную прямой а. А можно ли это утверждение доказать?

Этот вопрос имеет большую историю. В «Началах» Евклида содержится постулат (пятый постулат Евклида), из которого следует, что через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной. Многие математики, начиная с древних времён, предпринимали попытки доказать пятый постулат Евклида, т. е. вывести его из других аксиом. Однако эти попытки каждый раз оказывались неудачными. И лишь в прошлом веке было окончательно выяснено, что утверждение о единственности прямой, проходящей через данную точку параллельно данной прямой, не может быть доказано на основе остальных аксиом Евклида, а само является аксиомой.

Огромную роль в решении этого непростого вопроса сыграл великий русский математик Николай Иванович Лобачевский (1792-1856).

Итак, в качестве ещё одного из исходных положений мы принимаем аксиому параллельных прямых .

Утверждения, которые выводятся непосредственно из аксиом или теорем, называются следствиями . Например, утверждения 1 и 2 (см. с. 35) являются следствиями из теоремы о биссектрисе равнобедренного треугольника.

Рассмотрим некоторые следствия из аксиомы параллельных прямых.

Действительно, пусть прямые а и b параллельны и прямая с пересекает прямую а в точке М (рис. 111, а). Докажем, что прямая с пересекает и прямую b. Если бы прямая с не пересекала прямую b, то через точку М проходили бы две прямые (прямые а и с), параллельные прямой b (рис. 111, б). Но это противоречит аксиоме параллельных прямых, и, значит, прямая с пересекает прямую b.


Рис. 111

Действительно, пусть прямые а и Ь параллельны прямой с (рис. 112, а). Докажем, что а || b. Допустим, что прямые а и b не параллельны, т. е. пересекаются в некоторой точке М (рис. 112,6). Тогда через точку М проходят две прямые (прямые а и b), параллельные прямой с.


Рис. 112

Но это противоречит аксиоме параллельных прямых. Поэтому наше предположение неверно, а значит, прямые а и b параллельны.

Теоремы об углах, образованных двумя параллельными прямыми и секущей

Во всякой теореме различают две части: условие и заключение . Условие теоремы - это то, что дано, а заключение - то, что требуется доказать.

Рассмотрим, например, теорему, выражающую признак параллельности двух прямых: если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.

В этой теореме условием является первая часть утверждения: «при пересечении двух прямых секущей накрест лежащие углы равны» (это дано), а заключением - вторая часть: «прямые параллельны» (это требуется доказать).

Теоремой, обратной данной , называется такая теорема, в которой условием является заключение данной теоремы, а заключением - условие данной теоремы. Докажем теоремы, обратные трём теоремам п. 25.

Теорема

Доказательство

Пусть параллельные прямые а и b пересечены секущей MN. Докажем, что накрест лежащие углы, например 1 и 2, равны (рис. 113).


Рис. 113

Допустим, что углы 1 и 2 не равны. Отложим от луча MN угол PMN, равный углу 2, так, чтобы ∠PMN и ∠2 были накрест лежащими углами при пересечении прямых МР и b секущей MN. По построению эти накрест лежащие углы равны, поэтому МР || b. Мы получили, что через точку М проходят две прямые (прямые а и МР), параллельные прямой Ь. Но это противоречит аксиоме параллельных прямых. Значит, наше допущение неверно и ∠1 = ∠2. Теорема доказана.

Замечание

При доказательстве этой теоремы мы использовали способ рассуждений, который называется методом доказательства от противного .

Мы предположили, что при пересечении параллельных прямых а и b секущей MN накрест лежащие углы 1 и 2 не равны, т. е. предположили противоположное тому, что нужно доказать. Исходя из этого предположения, путём рассуждений мы пришли к противоречию с аксиомой параллельных прямых. Это означает, что наше предположение неверно и, следовательно, ∠1 = ∠2.

Такой способ рассуждений часто используется в математике. Мы им пользовались и ранее, например в п. 12 при доказательстве того, что две прямые, перпендикулярные к третьей, не пересекаются. Этим же методом мы пользовались в п. 28 при доказательстве следствий 1 0 и 2 0 из аксиомы параллельных прямых.

Следствие

Действительно, пусть а || b, с ⊥ a, т. е. ∠1 = 90° (рис. 114). Прямая с пересекает прямую а, поэтому она пересекает также прямую b. При пересечении параллельных прямых а и Ь секущей с образуются равные накрест лежащие углы: ∠1=∠2. Так как ∠1 = 90°, то и ∠2 = 90°, т. е. с ⊥ b, что и требовалось доказать.


Рис. 114

Теорема

Доказательство

Пусть параллельные прямые а и b пересечены секущей с. Докажем, что соответственные углы, например 1 и 2, равны (см. рис. 102). Так как а || b, то накрест лежащие углы 1 и 3 равны.

Углы 2 и 3 равны как вертикальные. Из равенств ∠1 = ∠3 и ∠2 = ∠3 следует, что ∠1 = ∠2. Теорема доказана.

Теорема

Доказательство

Пусть параллельные прямые а и b пересечены секущей с (см. рис. 102). Докажем, например, что ∠1 + ∠4 = 180°. Так как а || b, то соответственные углы 1 и 2 равны. Углы 2 и 4 смежные, поэтому ∠2 + ∠4 = 180°. Из равенств ∠1 = ∠2 и ∠2 + ∠4 = 180° следует, что ∠1 + ∠4 = 180°. Теорема доказана.

Замечание

Если доказана некоторая теорема, то отсюда ещё не следует справедливость обратного утверждения. Более того, обратное утверждение не всегда верно. Приведём простой пример. Мы знаем, что если углы вертикальные, то они равны. Обратное утверждение: «если углы равны, то они вертикальные», конечно же, неверно.

Углы с соответственно параллельными или перпендикулярными сторонами

Докажем теорему об углах с соответственно параллельными сторонами.

Теорема

Доказательство

Пусть ∠AOB и ∠A 1 O 1 B 1 - данные углы и ОА || О 1 А 1 , ОВ || О 1 В 1 . Если угол АОВ развёрнутый, то и угол А 1 О 1 В 1 - развёрнутый (объясните почему), поэтому эти углы равны. Пусть ∠AOB - неразвёрнутый угол. Возможные случаи расположения углов АОВ и А 1 О 1 В 1 изображены на рисунке 115, а и б. Прямая О 1 В 1 пересекает прямую О 1 А 1 и, следовательно, пересекает параллельную ей прямую ОА в некоторой точке М. Параллельные прямые ОВ и О 1 В 1 пересечены секущей ОМ, поэтому один из углов, образованных при пересечении прямых О 1 В 1 и ОА (угол 1 на рисунке 115), равен углу АОВ (как накрест лежащие углы). Параллельные прямые ОА и О 1 А 1 пересечены секущей О 1 М, поэтому либо ∠1 = ∠A 1 O 1 B 1 (рис. 115, а), либо ∠1 + ∠A 1 O 1 B 1 = 180° (рис. 115, б). Из равенства ∠1 = ∠AOB и последних двух равенств следует, что либо ∠AOB = ∠A 1 O 1 B 1 (см. рис. 115, а), либо ∠AOB + ∠A 1 O 1 B 1 = 180° (см. рис. 115, б). Теорема доказана.


Рис. 115

Докажем теперь теорему об углах с соответственно перпендикулярными сторонами.

Теорема

Доказательство

Пусть ∠AOB и ∠A 1 O 1 B 1 - данные углы, OA ⊥ O 1 A 1 , OB ⊥ O 1 B 1 . Если угол АОВ развёрнутый или прямой, то и угол А 1 О 1 В 1 развёрнутый или прямой (объясните почему), поэтому эти углы равны. Пусть ∠AOB < 180°, О ∉ О 1 А 1 , О ∉ О 1 В 1 (случаи О ∈ O 1 А 1 , О ∈ О 1 В 1 рассмотрите самостоятельно).

Возможны два случая (рис. 116).

1 0 . ∠AOB < 90° (см. рис. 116, а). Проведём луч ОС так, чтобы прямые ОА и ОС были взаимно перпендикулярными, а точки В и С лежали по разные стороны от прямой О А. Далее, проведём луч OD так, чтобы прямые ОВ и OD были взаимно перпендикулярными, а точки С и D лежали по одну сторону от прямой О А. Поскольку ∠AOB = 90° - ∠AOD и ∠COD = 90° - ∠AOD, то ∠AOB = ∠COD. Стороны угла COD соответственно параллельны сторонам угла А 1 О 1 В 1 (объясните почему), поэтому либо ∠COD = ∠A 1 O 1 B 1 , либо ∠COD + ∠A 1 O 1 B 1 = 180°. Следовательно, либо ∠AOB = ∠A 1 O 1 B 1 , либо ∠AOB + ∠A 1 O 1 B 1 = 180°.

2 0 . ∠AOB > 90° (см. рис. 116, б). Проведём луч ОС так, чтобы угол АОС был смежным с углом АОВ. Угол АОС острый, и его стороны соответственно перпендикулярны сторонам угла А 1 О 1 В 1 . Следовательно, либо.∠AOC + ∠A 1 O 1 B 1 = 180°, либо ∠AOC = ∠A 1 O 1 B 1 . В первом случае ∠AOB = ∠A 1 O 1 B 1 , во втором случае ∠AOB + ∠A 1 O 1 B 1 = 180°. Теорема доказана.

Задачи

196. Дан треугольник АВС. Сколько прямых, параллельных стороне АВ, можно провести через вершину С?

197. Через точку, не лежащую на прямой р, проведены четыре прямые. Сколько из этих прямых пересекают прямую р? Рассмотрите все возможные случаи.

198. Прямые а и b перпендикулярны к прямой р, прямая с пересекает прямую а. Пересекает ли прямая с прямую b?

199. Прямая р параллельна стороне АВ треугольника АВС. Докажите, что прямые ВС и АС пересекают прямую р.

200. На рисунке 117 AD || p и PQ || ВС. Докажите, что прямая р пересекает прямые АВ, АЕ, АС, ВС и PQ.


Рис. 117

201. Сумма накрест лежащих углов при пересечении двух параллельных прямых секущей равна 210°. Найдите эти углы.

202. На рисунке 118 прямые а, b и с пересечены прямой d, ∠1 = 42°, ∠2 = 140°, ∠3 = 138°. Какие из прямых а, b и с параллельны?


Рис. 118

203. Найдите все углы, образованные при пересечении двух параллельных прямых а и b секущей с, если:

    а) один из углов равен 150°;
    б) один из углов на 70° больше другого.

204. Концы отрезка АВ лежат на параллельных прямых а и b. Прямая, проходящая через середину О этого отрезка, пересекает прямые а и b в точках С и D. Докажите, что СО = ОD.

205. По данным рисунка 119 найдите ∠1.


Рис. 119

206. ∠ABC = 70°, a ABCD = 110°. Могут ли прямые АВ и CD быть:

    а) параллельными;
    б) пересекающимися?

207. Ответьте на вопросы задачи 206, если ∠АВС = 65°, а ∠BCD= 105°.

208. Разность двух односторонних углов при пересечении двух параллельных прямых секущей равна 50°. Найдите эти углы.

209. На рисунке 120 а || b, с || d, ∠4 = 45°. Найдите углы 1, 2 и 3.


Рис. 120

210. Два тела Р 1 и Р 2 подвешены на концах нити, перекинутой через блоки А и В (рис. 121). Третье тело Р 3 подвешено к той же нити в точке С и уравновешивает тела Р 1 и Р 2 . (При этом АР 1 || ВР 2 || СР 3 .) Докажите, что ∠ACB = ∠CAP 1 + ∠CBP 2 .


Рис. 121

211. Две параллельные прямые пересечены секущей. Докажите, что: а) биссектрисы накрест лежащих углов параллельны; б) биссектрисы односторонних углов перпендикулярны.

212. Прямые, содержащие высоты АА 1 и ВВ 1 треугольника АВС, пересекаются в точке Н, угол В - тупой, ∠C = 20°. Найдите угол АHВ.

Ответы к задачам

    196. Одну прямую.

    197. Три или четыре.

    201. 105°, 105°.

    203. б) Четыре угла по 55°, четыре других угла по 125°.

    206. а) Да; б) да.

    207. а) Нет; б) да.

    208. 115° и 65°.

    209. ∠1 = 135°, ∠2 = 45°, ∠3=135°.

    210. Указание. Рассмотреть продолжение луча СР 3 .

Рис.1-2

Например, дано задание провести две параллельные прямые, причем так, чтобы через данную точку М проходила хотя бы одна из прямых. Таким образом, через заданную точку М проведем взаимно перпендикулярные прямые МN и СD . А через точку N проведем вторую прямую АВ , она должна быть перпендикулярной к прямой МN .

Сделаем вывод: прямая АВ перпендикулярна к прямой МN и прямая СD тоже перпендикулярна в прямой МN , а так как данные прямые параллельны к одной прямой, то, как следствие прямая СD параллельна АВ . Значит, через точку М проходит прямая СD , которая параллельна прямой АВ . Узнаем: можно ли провести еще одну прямую через точку М , чтобы она была параллельна прямой АВ ?

Данное утверждение является ответом на наш вопрос: через точку на плоскости, которая не лежит на данной прямой, можно провести всего одну прямую, которая будет параллельна к данной прямой. Такое отвержение в другой формулировке без доказательств еще в давние времена принял ученый Евклид. Известно, что такие утверждения, принятые без доказательства, называют аксиомами.

Вышеописанное утверждение называется аксиомой о параллельных прямых. Данная аксиома Евклида имеет огромное значение для доказательства многих теорем.

Рассмотрим обратную теорему. Если прямая пересекает параллельные прямые, то и углы, лежащие при параллельных прямых накрест, соответственно равны.

Рис. 3

Доказательство: допустим, что АС и ВD являются параллельными прямыми, тогда прямая АВ является их секущей прямой. Нам нужно доказать, что ÐСАВ =Ð АВD .

Нам нужно провести так прямую АС1 , чтобы ÐС1АВ=ÐАВD . В соответствии с аксиомой параллельности прямых АС1||ВD , в условии же мы имеем АС||ВD . А это означает, что через данную точку А проходят две прямые, причем они параллельны прямой ВD . Получается противоречие аксиоме параллельности прямых, а это означает, что прямая АС1 проведена неверно.

Правильно будет, если ÐСАВ=ÐАВD . Сделаем вывод: в том случае, когда одной из параллельных прямых перпендикулярна данная прямая, то она будет перпендикулярна и ко второй прямой.

Получается, если (MN)^(CD) и (CD)||(AB) , то Ð1=Ð2=90о . А это значит: (MN)^(AB) (Рис. 1) .

Докажем теорему: если две прямые являются параллельными к третьей, то они будут параллельны одна ко второй.

Рис. 4

Пусть прямая a параллельна прямой с и прямая b тоже параллельна прямой с (рис. 4 а) . Нам нужно доказать, что a||b .

Предположим, что прямые a и b не являются параллельными, но они пересекаются в точке М (рис. 4 б) . А это значит, что две прямые a и b , которые параллельны к прямой с проходят через одну точку, а это полное противоречие аксиоме параллельности прямых. Значит наши прямые a и b параллельны.

§ 1 Аксиома параллельных прямых

Выясним, какие утверждения называются аксиомами, приведем примеры аксиом, сформулируем аксиому параллельных прямых и рассмотрим некоторые её следствия.

При изучении геометрических фигур и их свойств возникает необходимость в доказательстве различных утверждений - теорем. При их доказательстве часто опираются на ранее доказанные теоремы. Возникает вопрос: а на чем основаны доказательства самых первых теорем? В геометрии приняты некоторые исходные положения, на их основе и доказываются далее теоремы. Такие исходные положения называются аксиомами. Аксиома принимается без доказательств. Слово аксиома происходит от греческого слова «аксиос», что означает «ценный, достойный».

С некоторыми аксиомами мы уже знакомы. Например, аксиомой является утверждение: через любые две точки проходит прямая, и притом только одна.

При сравнении двух отрезков и двух углов мы накладывали один отрезок на другой, а угол накладывали на другой угол. Возможность такого наложения вытекает из следующих аксиом:

·на любом луче от его начала можно отложить отрезок, равный данному, и притом только один;

·от любого луча в заданную сторону можно отложить угол, равный данному неразвернутому углу, и притом только один.

Геометрия - древняя наука. Почти два тысячелетия геометрия изучалась по знаменитому сочинению «Начала» древнегреческого ученого Евклида. Евклид сначала формулировал исходные положения - постулаты, а затем на их основе путем логических рассуждений доказывал другие утверждения. Геометрия, изложенная в «Началах», называется евклидовой геометрией. В рукописях ученого есть утверждение, называемое пятым постулатом, вокруг которого очень долгое время разгорались споры. Многие математики предпринимали попытки доказать пятый постулат Евклида, т.е. вывести его из других аксиом, но каждый раз доказательства были неполными или заходили в тупик. Лишь в XIX веке было окончательно выяснено, что пятый постулат не может быть доказан на основе остальных аксиом Евклида, и сам является аксиомой. Огромную роль в решении этого вопроса сыграл русский математик Николай Иванович Лобачевский (1792-1856). Итак, пятый постулат - аксиома параллельных прямых.

Аксиома: через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

§ 2 Cледствия из аксиомы параллельных прямых

Утверждения, которые выводятся непосредственно из аксиом или теорем, называются следствиями. Рассмотрим некоторые следствия из аксиомы параллельных прямых.

Следствие 1. Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую.

Дано: прямые а и b параллельны, прямая с пересекает прямую а в точке А.

Доказать: прямая с пересекает прямую b.

Доказательство: если бы прямая с не пересекала прямую b, то через точку А проходили бы две прямые а и с, параллельные прямой b. Но это противоречит аксиоме параллельных прямых: через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной. Значит, прямая с пересекает прямую b.

Следствие 2. Если две прямые параллельны третьей прямой, то они параллельны.

Дано: прямые а и b параллельны прямой с. (а||с, b||с)

Доказать: прямая а параллельна прямой b.

Доказательство: допустим, что прямые а и b не параллельны, т.е. пересекаются в некоторой точке А. Тогда через точку А проходят две прямые а и b, параллельные прямой с. Но по аксиоме параллельных прямых через точку, не лежащую на данной прямой, проходит только одна прямая, параллельна данной. Значит, наше предположение неверно, следовательно, прямые а и b параллельны.

Список использованной литературы:

  1. Геометрия. 7-9 классы: учеб. для общеобразоват. организаций / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – М.: Просвещение, 2013. – 383 с.: ил.
  2. Гаврилова Н.Ф. Поурочные разработки по геометрии 7 класс. - М.: «ВАКО», 2004, 288с. – (В помощь школьному учителю).
  3. Белицкая О.В. Геометрия. 7 класс. Ч.1. Тесты. – Саратов: Лицей, 2014. – 64 с.

Использованные изображения:




Мы использовали и другие аксиомы, хотя особо не выделяли их. Так, сравнение 2-ух отрезков мы проводили с помощью наложения. Возможность такого наложения вытекает из аксиомы «На любом луче от его начала можно отложить отрезок, равный данному, и притом только один»




Эти аксиомы не вызывают сомнений и с помощью них доказываются другие утверждения. Такой способ зародился очень давно и был изложен в сочинении «Начала» ученого Евклида. Некоторые из аксиом Евклида - постулаты сейчас используются в геометрии а сама геометрия, изложенная в «Началах», называется Евклидовой геометрией.








Теоремы об углах, образованных двумя параллельными и секущей. Условие – это то, что дано. Заключение – то, что требуется доказать. Теорема, обратная данной –такая теорема, в которой условием является заключение данной теоремы, а заключением – условие данной теоремы.








Замечание. Если доказана некоторая теорема, то отсюда еще не следует справедливость обратного утверждения. Более того, обратное утверждение не всегда верно. Например, «вертикальные углы равны». Обратное утверждение: «если углы равны, то они вертикальные»- конечно же, неверно.